

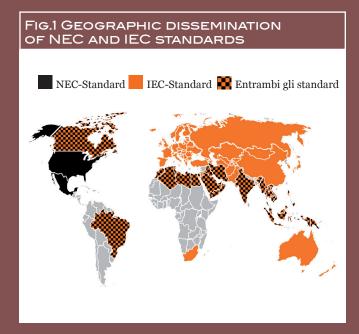
To be sure to be safe.

THE IECANDINE CERTIFICATION SYSTEMS

	1. Foreword	PAGE 5
	2. The classification of hazardous locations	PAGE 7
	3. The north american approach	PAGE 8
	■ 3.1. ANALYSIS OF THE NORTH AMERICAN APPROACH	PAGE 10
_	■ 3.1.1. THE TYPES OF HAZARDOUS LOCATIONS	PAGE 10
	■■ 3.1.2. THE CONDITIONS	
	OF HAZARDOUS LOCATIONS	PAGE 11
	■■ 3.1.3. THE NATURE	
	OF HAZARDOUS SUBSTANCES	PAGE 12
	■■3.1.4. REVIEW	PAGE 13
	4. The european and international approach	PAGE 14
	■ 4.1. ANALYSIS OF THE EUROPEAN	
	AND INTERNATIONAL APPROACH	PAGE 14
	4.1.1. TYPES OF HAZARDOUS LOCATIONS	PAGE 14
	■ 4.1.2. THE CONDITIONS	
	OF HAZARDOUS LOCATONS	PAGE 15
	■■ 4.1.3. THE NATURE	
	OF HAZARDOUS SUBSTANCES	PAGE 17
	■■ 4.1.4. REVIEW	PAGE 17
	5. The comparison between the two methods	PAGE 19
	6. The product certification	PAGE 23
	7. The standards supporting certification	PAGE 25

1. FOREWORD

onformity to the **Atex Directive** is a necessary and sufficient condition in European Union countries for the installation of protected electrical equipment in areas classified as hazardous. In Countries that do not belong to the European Union, but belong to IECEx, protected electrical equipment is still subject to assessment of conformity to the standards of the **IECEx system** (International Electrotechnical Commission System for Certification to Standards Relating to Equipment for use in Explosive Atmospheres), both for general parts and for parts related to protection methods, by a third party entity. This is a voluntary certification scheme of an international character which, in its philosophy, is very similar to the ATEX Directive and calls for both design (Ex-TR) and manufacturing control (QAR) by a Certification Body accredited by this scheme; the certificate of conformity (CoC) may be applied for with these two documents. The regulatory framework is that of the IEC 60079 and IEC 61241 series.


The aim of the IECEx System is to support international trade in equipment intended for environments with explosive atmospheres, maintaining the necessary level of safety:

- reduction in test and certification costs for the manufacturer;
- reduction in time to market;
- international trust in the product assessment process;
- an international database;
- maintaining an international level of trust towards equipment and services subject to IECEx certification.

This scheme, as well as its certificates, is recognised by an ever increasing number of Countries internationally. The certificates issued by the IECEx system are issued as "electronic certificates" and are available on the IECEx website. This allows the public to access them for viewing and printing them.

A similar but not identical system is in force on the other side of the world, the **NEC** system. The purpose of this document is to draw a comparison between internationally used (IECEx) and US (NEC) classification of locations with explosive atmosphere, whether formed by gas and air or combustible dust and air mixtures.

The American classification and marking use the method of Classes and Divisions, unlike the European ATEX praxis and the international IEC one that uses the Zone method. However, article 505 of NEC offers the opportunity of a choice in the way of classifying with the aim of giving to the IECEx system worldwide recognition and support free circulation of equipment suited for the zones classified according to the IECEx system.

J. FOREWORD

This means that products may be approved:
either by Class, Division and Group of Substances
For instance: Class 1, Division 2, A,B,C,D T3;

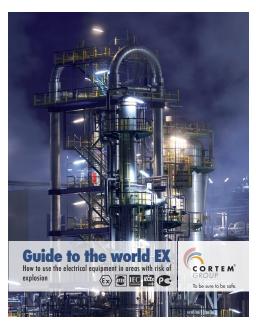
• or by Class, Division and Group of Gas

For instance: Class 1, Zone 2, IIA, IIB, IIC T3.

Figure 1 on the previous page describes the geographical spread of NEC and IECEx standards, highlighting also those Countries where both are valid and applicable.

To help you to quickly comprehend the acronyms we have used in the text, Table 1 below provides a key to their meaning.

TA	B.1 THE MAIN ACF	RONYMS AND THEIF	RMEANING		
	ACRONIMO	ACRONIMO	ACRONIMO	ACRONIMO	ACRONIMO
	ANSI	BIA	CAS	EN	FM
MEANING	American National Standards Institute	Berufsgenossenschaf- tliches Institut für Arbeitsschutz	Chemical Abstracts Service	European standard	Factory Mutual approval standard
	IEC	IECEE	IECEx	ISA	MESG
MEANING	International Electrotechnical Commission	IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components	IEC system for certification to standards relating to equipment for use in explosive atmospheres (IECEx system)	International Society of Automation	Maximum Experimental Safe Gap
	MIC	NEC®	NFPA®	ONU	NANDO
MEANING	Minimum Ignition Current	National Electrical Code®	National Fire Protection Association®	Organizzazione delle Nazioni Unite	New Approach Notified and Designated Organisations
	NRTL	OSHA	UL	UNECE	
MEANING	Nationally Recognized Testing Laboratory	Occupational Safety and Health Administration	Underwriters Laboratories	United Nations Economic Commission for Europe	



s we have detailed in the *"Guide to the Ex world"* (available on www.cortemgroup. com), to which reference should be made

for a more extensive presentation of the topic, location classification may be defined as <u>a method</u> to analyse and classify the environment in which explosive atmospheres may form due to the presence of gas and/or combustible dusts, in order to foster correct choice and installation of the electrical equipment intended for it.

Classification is team work! The classification of the areas should be performed by people who understand the importance and significance of the properties of flammable substances and by people familiar

with the process and equipment, jointly with skilled personnel in the field of safety, electrical and mechanical installations and more; in addition, close cooperation is

> required between safety and equipment specialists.

After the team has been formed, the stages leading to hazardous location classification may seriously be dealt with:

a) identify hazardous substances;

b) identify sources of emission;

c) define the emission rate of sources;

d) establish the degree of ventilation;e) define hazardous areas;

f) define the extension of hazardous areas.

Let's look at classification $\underline{methods}$ in more detail.

3. THE NORTH AMERICAN approach

he North American approach, and more specifically the US one, is based on the "National Electrical Code" (NEC[®]).

The National Electrical Code[®], or *NFPA* 70[®], is a standard that may be implemented regionally in the US for safe installation of equipment and its wiring. It belongs to the set of National Fire Codes published by the *National Fire Protection Association* (*NFPA*). The NEC[®] is approved as a national American standard by the *American National Standards Institute* (*ANSI*) and is formally identified as *ANSI* / *NFPA* 70.

The National Electrical Code[®] is divided into chapters that deal with topics such as: wiring and relevant methods, equipment for general use, special locations and equipment and communication systems. We might say that, just as for us Europeans the harmonised standards are the reference state of the art that is also valid in jurisprudence, the same applies to US citizens with the National Electrical Code[®].

The NEC[®] also contains information on the official definition of Hazardous Locations and related standards supplied by the *Occupational Safety and Health Administration (OSHA)* which provides legal status to the NEC[®] and its application.

A substantial part of the NEC[®] (Chapter 5: special locations) is dedicated to hazardous locations in which electrical equipment may become a source of ignition.

Let's look at articles concerning Ex issues in more detail.

////.>>>

art.**500**

Hazardous locations (classified), Classes I, II and III, Divisions 1 and 2. Provides the basis for interpretation and correct application of articles from 501 to 517.

art.**501**

Class I locations.

Article 501 concerns requirements for electrical and electronic equipment for all voltages and relevant wirings of Class I locations, Division 1 and 2 where fires or explosions could occur due to flammable gases or vapours or flammable liquids. The following sub-articles are present: I: overview; II: wirings; III: equipment.

art.**502**

Class II locations. Article 502 concerns requirements for electrical and electronic equipment for all voltages and relevant wirings of Class II locations, Division 1 and 2 where fires or explosions could occur due to combustible dusts. The following subarticles are present: I: overview; II: wirings; III: equipment.

art.**503**

Class III locations. Article 503 concerns requirements for electrical and electronic equipment for all voltages and relevant wirings of Class III locations, Division 1 and 2 where fires or explosions could occur due to ignitable fibres. The following sub-articles are present: I: overview; II: wirings; III: equipment.

art.**504**

Intrinsic safety systems. Article 504 concerns the installation of intrinsic safety equipment, and wiring them in Class I, II and III areas.

'/ >>>

Locations of Zone 0, 1 and 2. It covers the

requirements for the classification system in Zones (Zone 0, 1, and 2) as an alternative to the classification system in divisions covered under article 500 for Class I;

art

Zone 20, 21 and 22 locations for combustible dusts or ignitable fibres. It covers the requirements for the classification system in Zones (Zone 20, 21, and 22) as an alternative to the classification system in Divisions covered under articles 500, 502 and 503 for Classes II and III; combustible metal dusts are not covered by this article.

Fuel dispensing installations. This article applies to fuel dispensing equipment, to distribution facilities of motor fuels, including for maritime use, fuel dispensing facilities located within buildings and facilities for dispensing fuel for vehicle fleets.

Systems with large amounts in storage. This article applies to a property or portion of property in which flammable liquids are received from a tanker ship, from pipes, a car tank or tanker truck and are deposited or mixed in large quantities in order to distribute these liquids by tank vessel, piping, car tanks, tanker trucks, portable tank or container.

Hazardous locations (classified) - specific features. Articles from 511 to 517 cover the locations or parts of locations that are or may be hazardous due to atmospheric concentrations of flammable liquids, gases or vapours, or due to deposits or accumulations of materials that might be easily ignited.

111 X

Commercial, repair and storage garages.

These locations include those used for maintenance and repair of motor vehicles equipped with their own engine (including, but not limited to, cars, buses, trucks and tractors) where volatile flammable liquids or flammable gases are used as fuel.

art.513

This article applies to hangars where aircraft are parked containing Class I (flammable) or Class II (fuels) liquids whose temperatures are higher than the flash point. In these locations aircraft undergo maintenance, repair or modification operations. It does not apply to locations exclusively used for aircraft that have never contained fuel or aircraft discharged of fuel.

art.**514**

Spray, immersion, coating application processes. This article concerns the regular or frequent application of flammable liquids, combustible liquids and combustible dust from spraying and application of flammable or combustible liquids at temperatures above their flash point, by means of dipping, coating or other means.

1

Health service facilities. The provisions of this article apply to electrical constructions and installation criteria in health facilities that provide services to human beings.

THE NORTH AMERICAN approach

■ 3.1. ANALYSIS OF THE NORTH AMERICAN APPROACH

In the first instance we might say that, beyond some specific locations identified from art. 511 to art. 517, the North American approach adopts two classification systems of hazardous locations that it deems as equivalent:

- that of the two Divisions, traditionally used, (art. from 500 to 503) which refers to its own set of standards. For instance, for flame-proof enclosures standard FM class 3615 or standard ISA S12.22.01 or standard UL 1203;
- that of the three Zones (art. 505 and 506), • which in its turn refers to a whole set of standards. For instance, for flame-proof enclosures standard IEC 60079-1.

Let us turn now to analysing the former classification system and we will deal with the analysis of articles 505 and 506 and European and international approach in the next paragraph.

If we analyse articles from 500 to 503, NEC® classifies hazardous locations taking into account three criteria: the type, condition and nature.

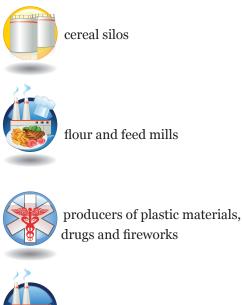
■ 3.1.1. THE TYPES OF HAZARDOUS LOCATIONS

a) Class I locations

According to NEC®, there are three types of hazardous location. The first type of hazard is that created by the presence of flammable gases or vapour in the air, such as natural gas or petrol vapours. When these materials are in the atmosphere, there is a potential risk of explosion caused by ignition from an electrical source or other type of source. The authors of NEC® have defined this first type of hazard "Class I". A Class I hazardous location is where flammable gases or vapours may be in the air in a sufficient amount to be explosive or flammable. Some typical Class I locations are:

oil refineries

fuel storage areas



gas systems and gas, liquefied petrol and natural gas storage and handling operations

b) Class II locations

The National Electrical Code® identifies "Class II" locations as areas where the danger is represented by combustible dusts. Finely pulverised material, suspended in the atmosphere, may cause one or more powerful explosions such as those occurring in an oil refinery, if not more catastrophic. Some typical Class II locations are:

producers of starch or confectionery

spice grinding, sugar and cocoa production systems

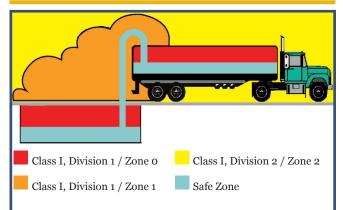
c) Class III locations

Hazardous **Class III** locations, according to the NEC[®], are areas where there are fibres or "solid combustible particles" (flyings) that are easily flammable, due to the types of materials processed, stored or transformed. The fibres and solid particles are not likely to be suspended in the air, but may accumulate around a machine or on lighting fixtures and be triggered by heat, by a spark or a hot metal. Some typical Class III locations are:

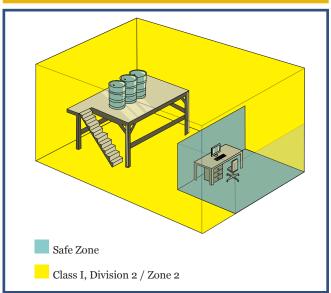
textile and cotton gin factories

systems that form, pulverise or cut wood and create sawdust or "solid particles"

3.1.2. THE CONDITIONS OF HAZARDOUS LOCATIONS


In addition to the types of hazardous locations, the National Electrical Code[®] also deals with the type of conditions where these hazards are present: normal conditions or abnormal conditions. In the **normal condition**, the risk is present in day-today production operations or during the frequent repair and maintenance activity.

When the hazardous material is confined within closed containers or closed systems and may only be present following accidental rupture, breakdown or unusual faulty operation, the **condition** is defined as **abnormal**.


The authors of the NEC[®] have defined these two types of conditions very simply: **Division 1 – normal and Division 2 – abnormal**. All the classes (I, II and III) may be Division 1 or Division 2.

Class I, Division 1 locations are, for instance, areas next to safety valves in an oil refinery or areas close to open loading structures such as those that are created during fuel transfer from/to tanker truck/tank. In these locations, the hazardous material is present during normal system operations (Fig. 2).

FIG.2 CLASSIFICATION OF HAZARDOUS LOCATIONS DURING FUEL TRANSFER OPERATIONS

FIG. 3 CLASSIFICATION OF HAZARDOUS LOCATIONS IN A FLAMMABLE LIQUID STORAGE DEPOSIT

Storage drums containing flammable liquids closed in an internal deposit do not normally allow hazardous vapours to escape into the atmosphere. But what happens if one of the containers has leaks? There would be a Division 2 - abnormal condition, more precisely Class I, Division 2 (Fig. 3).

TAB. 2 THE TYPES OF HAZARDOUS LOCATIONS AND RISK CONDITIONS ACCORD	DING TO NEC®
--	--------------

		Division 1	Division 2		
Class I	flammable gases, vapours	The risk is present in day-to-day production operations or during the frequent repair and maintenance activity	ion the frequent ice activity abnormal ing t, rupture ration		
Class II	combustible dusts		present in a 5, i.e. followin breakdown, 1 faulty opera		
Class III	solid combustible fibres, particles		to-d to-d and sikis ions sual	The risk is operations accidental or unusual	

Table 2 above summarises the types of hazardous locations and risk conditions.

3.1.3. The nature of hazardous substances

The NEC[®] divides gases and vapours of **Class I** into four **Groups: A, B, C** and **D**. These materials are grouped based on the ignition temperature of the substance, its explosion pressure and other flammable characteristics.

The only substance in **Group A** is **acetylene**. Only a small percentage of hazardous locations is characterised by acetylene. Acetylene is a gas with extremely high explosion pressure.

Group B is another relatively small segment of classified areas. This group includes **hydrogen** and other materials with similar features. If certain specific restrictions of the Code are followed, some of these Group B locations, other than hydrogen, may actually be met with Group C and Group D equipment.

Group C and **Group D** are by far the most common Class I groups. They include most of all Class I hazardous locations. Group D includes many of the most common flammable substances such as butane, petrol, natural gas and propane.

TAB. 3 TEMPERATURE CLASS CLASSIFICATION FOR DUSTS

	Equipment not subject to overload		Equipment subject to overload			
			normal o	perations	abnormal	operations
	[°C]	[°F]	[°C]	[°F]	[°C]	[°F]
Е	200	392	200	392	200	392
F	200	392	150	302	200	392
G	165	329	120	248	165	329

TAB. 4 CLASS I, II, III HAZARDOUS LOCATIONS

CI ACC	CROURS	DIVI	SION
CLASS	GROUPS	1	2
I gases, vapours and liquids (art. 501)	A: acetylene B: hydrogen, etc. C: ether, etc. D: hydrocarbons, fuels, solvents, etc.	normally present and hazardous explosive atmosphere	atmosphere normally not present in an explosive concentration (but may be accidentally present)
II dusts (art. 502)	E: metallic dusts (conductive* and explosive) F: coal dusts (some are conductive* and all are explosive) G: flour, starch, wheat, combustible plastic or chemical powder (explosive)	flammable amounts of dust are or may be normally in suspension (cloud), or conductive dusts may be present	dust normally not suspended (cloud) in a flammable concentration (but may accidentally exist). Layers of dust are present.
III solid combustible fibres and particles (art. 503)	textile products, wood processing, etc. (easily flammable, but does not risk being explosive)	handled or used in production	stored or handled in warehouse (excluding production)

*NOTE: electrically conductive dusts are dusts with resistivity less than 105 $\Omega/{\rm cm}.$

In **Class II** – locations for the presence of dust – hazardous materials are divided into **Groups E**, **F** and **G**. These groups are classified based on ignition temperature and conductivity of the hazardous substances. Conductivity is an important issue in Class II locations, in particular metal dusts.

Metal dusts are classified in the Code as **Group E**: it includes aluminium and magnesium and other metal dusts of similar nature.

Group F contains materials such as carbon black, wood coal dust, pieces of coal and hard coal dust. **Group G** includes cereal, flour, starch, cocoa dust and other types of materials.

Table 3 on the previous page shows the classification of temperature classes for dusts. Class I, gases and vapours, is divided into Groups A, B, C and D, whereas Class II, dusts, into Groups E, F and G.

■ 3.1.4. REVIEW

Let's quickly review what we have seen so far. Hazardous locations are classified in three ways by the National Electrical Code[®]: **type**, **status** and **nature**.

There are three types of danger conditions: **Class** I – gas and vapours, **Class** II – dust **Class** III –

> combustible fibres and solid particles.

> There are two types of danger conditions: **Division 1** – normal, **Division 2** – abnormal.

> Finally, there is the nature of the hazardous substances which includes Groups A, B, C and D in Class I locations and Groups E, F and G in Class II locations.

> Table 4 summarises the various classified hazardous locations.

THE EUROPEAN and international approach

n the level of technical standards, the European and international approach match since most standards are voted with "parallel vote procedure": the European members of the various national Committees vote the document for it to simultaneously become international as well as European standard. This procedure is also valid for the Ex standard sphere. The following regulatory framework applies:

1. Location classification

- IEC 60079-10-1: 2020-12 "Explosive atmospheres - Part 10-1: Location classification. Explosive atmospheres due to the presence of gas".

- IEC 60079-10-2: 2015-01 "Explosive atmospheres - Part 10-2: Location classification. Explosive atmospheres due to the presence of combustible dusts".
- 2. Choice and installation of equipment

- IEC 60079-14:2013-11 "Explosive atmospheres -Part 14: Design, choice and installation of electrical systems".

REGULATOR FRAMEWORK: IEC 60079-10-1:2020-12 IEC 60079-10-2:2015-01 IEC 60079-14:2013-11

■ 4.1. ANALYSIS OF THE EUROPEAN AND INTERNATIONAL APPROACH

■ 4.1.1. TYPES OF HAZARDOUS LOCATIONS

a) Classification of locations due to gas presence.

On the technical-regulatory level, the locations where there are or may be explosive atmospheres due to the presence of gases in such quantities as to require special precautions for the construction, installation and use of equipment, are those which for the longest time have been regulated technically as well as in terms of legislation by individual States.

Explosive atmospheres for the presence of gas consider flammable substances in gas or vapour form, mixed with air, in atmospheric conditions.

There is no definite list of locations to be taken into account, but there are more than we can imagine! 328 Combustible gases are classified in standard IEC 60079-20-1. Reasoning in terms of macro areas, we might say that we should make the classification in the following locations:

chemical industry

pharmaceutical industry

recycling

landfills

b) Classification of locations according to the presence of combustible dusts.

The locations where there are or may be explosive atmospheres due to the presence of combustible dusts or solid particles, in such an amount as to require special provisions for construction, installation and use of equipment, are decidedly more recent than those of gases: in fact they are dated 2002.

Also in this case there is no definitive list to be considered, but there are more than we can imagine! If there are 328 classified combustible gases, the BIA report 13/97 mentions more than 4,300 combustible dusts, to include sawdust, flour and bread crumbs! And even more have been classified since 1997!

Reasoning in terms of macro areas, we might say that we should make the classification in the following locations:

wood industry

food and feed industry

metal and plastics industry

pharmaceutical industry

■■ 4.1.2. THE CONDITIONS OF HAZARDOUS LOCATIONS

The European and international standards mentioned above classify hazardous locations in Zones based on the frequency of formation and permanence of an explosive atmosphere caused by the presence of gas or combustible dusts (Fig. 4).

Zone 0Zone 1Zone 2Image: Second systemImage: Second system<t

FIG.4 THE DIVISION OF HAZARDOUS LOCATIONS BASED ON THE PRESENCE AND CONCENTRATION OF GASES (ZONE 0, 1 AND 2) AND DUSTS (ZONE 20, 21 AND 22)

Note: the graphical lines in each box are internationally standardised ones

THE EUROPEAN and international approach

>>> It should be noted that, with regards to combustible dusts, the division into zones is exclusively determined by dust in the form of cloud; the layers, deposits and accumulations of dust are considered as "any other source" that might form an explosive atmosphere from dust, but do not determine any zone.

We would like to underline that also in its latest report of 2011 the UN agency UNECE (http://www. unece.org/) refers to international IEC standards as an instrument to be implemented for the division of hazardous locations into zones.

Finally, with regards to the European Union, the "Social Directives" block, i.e. those standards that set forth requirements for improving workers' protection and safety, includes Directive 99/92/EC, known as "ATEX 137" (Tab. 5) (due to the Treaty's article) or more simply as the second "ATEX" Directive. This document is the legal reference for employers of those workers who might be exposed to the hazard of explosive atmospheres.

But where is the difference between the various zones? The difference lies in the likelihood of the

LET XILY, "LTY," LITY, LITY

TAB. 5 THE "ATEX 137" DIRECTIVE

(EC.O.J. series L, no. 23 of 28 January 2000)

explosive atmosphere of reference - within the explosiveness range - being present for a certain length of time over one year (Tab. 6).

	Zone o / Zone 20	Zone 1 / Zona 21	Zone 2 / Zone 22
GASES	Location where an explosive atmosphere caused by the presence of gas (Zone 0) or of dust in cloud form (Zone 20) or for long periods or frequently	Location where an explosive atmosphere caused by the presence of gas (Zone 1) or dust in cloud form (Zone 21) is likely to be occasionally present	Location where an explosive atmosphere caused by the presence of gas (Zone 2) or dust in cloud form (Zone 22) is not likely to be present during normal operation, but
DUSTS	or nequency	during normal operation	should this occur, it is likely to persist for short periods only

TAB. 6 THE CLASSIFICATION OF HAZARDOUS ZONES DUE TO THE PRESENCE OF GAS AND DUSTS ACCORDING TO INTERNATIONAL STANDARDS (IEC ZONE SYSTEM)

4.1.3. THE NATURE OF HAZARDOUS SUBSTANCES

a) Combustible gases.

represented in Graph 1.

b) Combustible dusts.

into three sub-groups: **A**, **B** and **C**:

With regards to combustible gases, they are divided into two Groups ("I" and "II") and Group II is divided into three sub-groups: **A**, **B** and **C**.

This subdivision is based on the maximum safety experimental gap (MESG) or on the minimum ignition current ratio (MIC ratio) of the explosive atmosphere due to the presence of gas where the equipment may be installed.

227 combustible gases belong to group IIA, 66 to group IIB cluding fibres, of nominal dimensions> 500 μm";

- IIIB: non-conductive dust, i.e. "solid particles finely subdivided, of nominal dimensions \leq 500 µm, with electrical resistivity > 10³ Ωm";

- IIIC: conductive dust, i.e. "solid particles finely subdivided, of nominal dimensions \leq 500 µm, with electrical resistivity \leq 10³ Ωm".

Group III has been defined on the technical product standard (IEC 60079-0), on the classification one

(IEC 60079-10-2), and on the installation one (IEC 60079-14).

■ 4.1.4. REVIEW

Let's quickly review what we have dealt with in this chapter.

There are two types of hazardous conditions: those caused by gases, vapours, clouds, and those caused by combustible dusts.

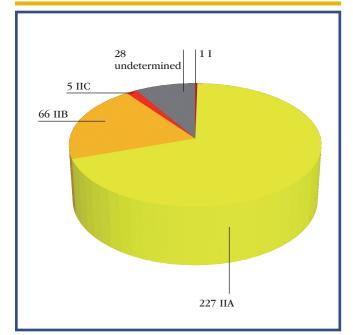
There are three types of danger conditions: Zone

TAB. 7 SOME OF THE MOST REPRESENTATIVE GASES

Group	Sub-group	Gas	GAS No.
I		firedamp (methane)	74-82-8
	IIA	propane	74-98-6
	IIB	ethylene	74-85-1
п	шс	hydrogen	1333-74-0
	ne	acetylene	74-86-2

GRAPH 1 THE SUBDIVISION OF GASES INTO SUB-GROUPS

Application of this concept has resulted in the division


Among all these gases, some representative ones of their

With regards to combustible dusts, they have recently

been inserted in a new group (Group "III") and divided

- IIIA: combustible particles, i.e. "solid particles, in-

group or sub-groups have been identified (Tab. 7).

THE EUROPEAN and international approach

>>> o or 20 – very high risk, Zone 1 or 21 – high risk, Zone 2 or 22 – normal risk.

And finally, there is the nature of the hazardous substance: Group I, that regards the presence of firedamp and pulverised coal (normally defined as "mine"), Group II and Group III both divided into A, B and C. Table 8 summarises the various classified hazardous locations.

The contents of this paragraph 4 also applies to the National Electrical Code, art. 505 and 506.

TAB. 8 SUMMARY CHART OF THE CLASSIFIED HAZARDOUS LOCATIONS

		GROUPS		ZONES	
		CROOTS	0	1	2
		I: firedamp			
	IIA: propane atmosphere is present continuously of	IIA: propane	-	The explosive atmosphere is likely to be occasionally	The explosive atmosphere is not likely to be present
GASES		for long periods or frequently	present during normal operation	during normal operation, but should this occur, it is likely	
		IIC : hydrogen and acetylene			to persist for short periods only
			20	21	22
DUSTS		IIIA: combustible particles IIIB: non-conductive dust IIIC: non-conductive dust	The explosive atmosphere is present continuously or for long periods or frequently	The explosive atmosphere is likely to be occasionally present during normal operation	The explosive atmosphere is not likely to be present during normal operation, but should this occur, it is likely to persist for short periods only

5•**THE COMPARISON** between the two methods

s we have seen, problems never end. A potentially explosive mixture consisting of combustible gas and air does not

behave differently according to where it is; if ignition conditions are favourable, the explosion risk becomes tangible.

The methods we have presented have been defined by different subjects in order to reduce the initial risk.

Far be it from us, therefore, to establish which of the various methods is the best.

We also remark how it is incorrect to compare the North American approach with the European/international one, as NEC[®] includes both methods.

With regards to classification, Tables 9 and 10 below highlight the correlations between the two systems.

TAB. 9 COMPARISON BETWEEN CLASSIFICATION OF HAZARDOUS LOCATIONS DUE TO THE PRESENCE OF GAS ACCORDING TO INTERNATIONAL STANDARDS (IEC ZONE SYSTEM) AND ACCORDING TO NORTH AMERICAN STANDARDS

Æ	GAS		
() () () () () () () () () () () () () (Area where an explosive atmosphere consisting of a mixture of air and flammable substances in gas, vapour or mist form is present permanently or for long periods of time or often.	Area where formation of an explosive atmosphere consisting of a mixture of air and flammable substances in gas, vapour or mist form is likely to form during normal activities.	 Area where formation of an explosive atmosphere consisting of a mixture of air and flammable substances in gas, vapour or mist form is not likely to form during normal activities and, should it occur, it is exclusively for a short time.
art. 501	Class I, I	Division 1	Class I, Division 2

5. THE COMPARISON between the two methods

TAB. 10 COMPARISON BETWEEN THE CLASSIFICATION OF HAZARDOUS LOCATIONS DUE TO THE PRESENCE OF DUSTS ACCORDING TO INTERNATIONAL STANDARDS (IEC ZONE SYSTEM) AND ACCORDING TO NORTH AMERICAN STANDARDS

		DUSTS				
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Zone 20	Area where an explosive atmosphere in the form of combustible dust cloud in the air is present permanently or for long periods or often.	Zone 21	Area where an explosive atmosphere in the form of combustible dust cloud in the air is occasionally likely to form during normal activities.	Zone 22	Area where an explosive atmosphere in the form of combustible dust cloud is not likely to form during normal activities and, should it occur, it is only for a short time.
art. 502		Class II,	Divisio	on 1	С	lass II, Division 2

TAB. 11 THE SUBDIVISION OF GASES

	() () () art. 505	💻 art. 501
propane	ПА	D
ethylene	IIB	С
hydrogen	ПС	В
acetylene		Α

With regards to gas subdivision, the greatest difference lies in the attribution of the order of letters, as shown in Table 11.

With regards to dusts, it is difficult to draw a comparison since the classification criteria of each method are different.

Table 12 describes the comparison between classes of temperature since art. 500 of NEC[®] entails intermediate ones between those used by the other method.

Furthermore, the two systems have different "normal" ambient temperatures (Tab. 13).

As required by the technical standards, each product is placed on the market with its own identification plate which contains some information. Let us compare an identification plate complying with European/international standards with one com-

5• THE COMPARISON between the two methods

TAB. 12 COMPARING EUROPEAN/ INTERNATIONAL AND NORTH AMERICAN CLASSES OF TEMPERATURE FOR GROUP II

[°C]	[°F]	table 505.9(d)(1)	table 500.8(c)	
450	842	Т	<u>`1</u>	
300	572	T	<u>`2</u>	
280	536		T2A	
260	500		T2B	
230	446		T2C	
215	419		T2D	
200	392	Т3		
180	356		T3A	
165	329		T3B	
160	320		T3C	
135	275	 T4		
120	248		T4A	
100	212	T5		
85	185	Т	6	

TAB.13 COMPARISON BETWEEN EUROPEAN/INTERNATIONAL AND NORTH AMERICAN "NORMAL" AMBIENT TEMPERATURES

00 00 art. 505	art. 500
-20 ÷ +40 [°C]	-25 ÷ +40 [°C]

plying with art. 500 of NEC[®] (Fig. 5 and 6 on the following page).

The identification plate complying with European/ international standards (Fig. 5) includes:

- the name or logo of the manufacturer, i.e. the entity responsible for placing the product on the market;

- the year of manufacture (1), the serial number (2), equipment identification by means of product code definition (3);

- equipment data: temperature class (4), maximum surface temperature (5), ambient temperature (6), electrical data as per certificate (7);

- data concerning Ex aspects, i.e. marking, certificate number, etc. (8);

- warnings.

The identification plate complying with art. 500 NEC[®] includes:

- equipment identification through product code definition 1:

- type of protection 2 and serial number 3;

- the name or logo of the manufacturer, i.e. the entity responsible for placing the product on the market 4;

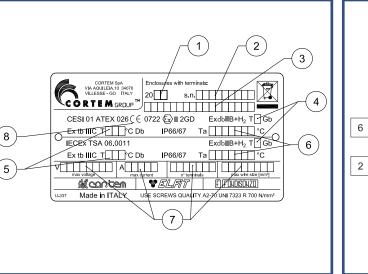
-25 ÷ +40 [°C] is the 'normal" ambient temperature set forth by art. 500 of NEC[®]

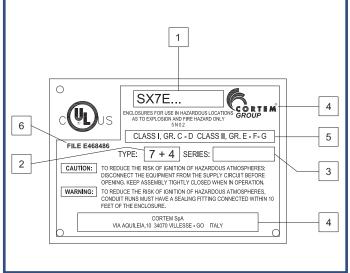
TAB. 14 HOW THE EQUIPMENT MARKING CHANGES IN THE VARIOUS

*** * * * * * _* *	CE 9876	II 2G II 2D	Ex db IIC T4 Ex tb IIIC T130°C	Gb Db	IP66
			Ex db IIC T4 Ex tb IIIC T130°C	Gb Db	IP66
art. 505	Class I	Zone 1	AEx db IIC T4	Gb	
art. 506		Zone 21	AEx tb IIIC T130°C	Db	IP66
	Class I	Division 1	Groups A, B, C, D, T4		
art. 500	Class II	Division 1	Groups E, F, G, T4		

- equipment marking 5;

- the certificate number 6;


- warnings and logo of the notified body, such as, in this


FIG. 5 IDENTIFICATION PLATE COMPLYING WITH EUROPEAN/ INTERNATIONAL STANDARDS

case, Underwriters Laboratories (UL).

Finally, we deem it useful to see how the marking of the same equipment might change in the different systems (Tab. 14).

FIG. 6 IDENTIFICATION PLATE COMPLYING WITH ART. 500 OF NEC

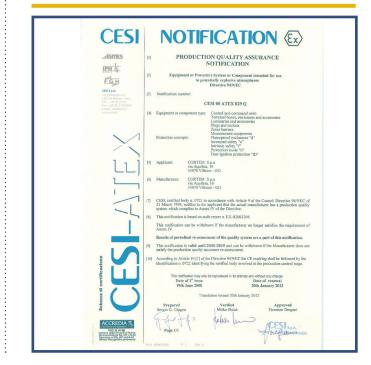
6. THE PRODUCT certification

onformity assessment, be it of products, processes or services, is quite similar in the various parts of the world and is

based on the trust the "certifier" is able to inspire in the concerned parties (manufacturers, users, Authorities, etc.) through impartiality, competency and confidentiality of its operations.

In the following table (Tab. 15) we have set out the three entities we deal with and which "qualify" conformity assessment bodies to perform their task at the end of a pathway.

It should be noted that little more than ten years ago IEC created its own certification scheme dedicated to the "Ex" sector which, as well as certifying products, also certifies persons' skills.


Table 16 on the next page summarises regulatory agencies and the number of bodies assessing conformity of products in general and Ex ones.

The last table highlights numbers that it is likely we have never taken into consideration because of a certain tradition.

Although all these schemes call for the products to meet industrial standards before "Ex" ones (see graph 2 in the next paragraph), and for the manufacturer to keep under control both the design and the production stage in order to be able to place the product on the market, there is a substantial difference between the various systems on the control of the latter stage.

Both the EC "ATEX" Directive and the IECEx certification scheme entail the possibility that a different

FIG. 7 ATEX CERTIFICATION OF PRODUCTION QUALITY

TAB. 15 REGULATORY AGENCIES DIVIDED BY TERRITORIAL COMPETENCE

 Ministry of Labour Occupational Safety and Health Administration (OSHA) Nationally Recognized Testing Laboratory (NRTL) 	 European Union European Commission New Approach Notified and Designated Organisations (NANDO) 	 International Electrotechnical Commission IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components (IECEE)

TAB. 16 NUMBER OF CONFORMITY ASSESSMENT BODIES AND NUMBER OF EX SECTOR CONFORMITY ASSESSMENT BODIES OVERSEEN BY REGULATORY BODIES

	 Nationally Recognized Testing Laboratory (NRTL) 	 New Approach Notified and Designated Organisations (NANDO) 	• IEC system for certification to standards relating to equipment for use in explosive atmospheres (IECEx system)
No. of conformity assessment bodies:	15	1.564	
No. of Ex sector conformity assessment bodies:	8	69	48

Body from the one that issued the project certificate might oversee the manufacture of the product. Furthermore, the custom is for the overseeing action to be carried out with yearly frequency (the interval between one audit and the next one is about 12 months). According to the US scheme, however, manufacturing is over-

FIG. 8 EXAMPLE OF IECEX CERTIFICATE

		CEx Certif of Conform	
	ertification Schen	TROTECHNICAL COMMISSION ne for Explosive Atmospheres e IECEX Scheme Valit www.iecex.com	
Certificate No.:	IECEx ITS 11.0018	issue No.:0	Certificate history Issue No. 1 (2012-8-30)
Status:	Current		Issue No. 0 (2011-12-1)
Date of Issue:	2011-12-01	Page 1 of 3	
Applicant:	Cortem S.p.A Via Aquileia, 10 34070 Villesse, Gorizia, Italy Italy		
Electrical Apparatus: Optional accessory:	EWL LED Lamp		
Type of Protection:	Ex d, e and t		
Marking:	Ex d e IIC T5 (Tamb -20°C t Ex tb IIIC T100°C (Tamb -20	o +60°C) Gb I°C to +60°C) Db IP66	
Approved for issue on Certification Body:	behalf of the IECEx	V K Varma	
Position:		Certification Officer	
Signature: (for printed version)			
Date:			
2. This certificate is not	chedule may only be reproduce transferable and remains the p inticity of this certificate may be	ed in full. roperty of the issuing body. e verified by visiting the Official IE	CEx Website.
Certificate issued by: Intertek ' IT	Testing & Certification Limiter S House, Cleeve Road, Loatherhead, Surrey, KT22 7SB United Kingdom		ntertek

seen by the same body that issued the project certificate and frequency is four times a year. Therefore, in the event a manufacturer should have several project certificates with various bodies, they will receive as many audits (4 a year) as the number of bodies from which they have obtained the project certificates.

FIG. 9 EXAMPLE OF UL CERTIFICATE

• THE STANDARDS supporting certification

o go back to what has been introduced in the previous paragraph, products tend to be subdivided by the market and by

manufacturers based on the intended use, as shown in the following graph (Graph 2).

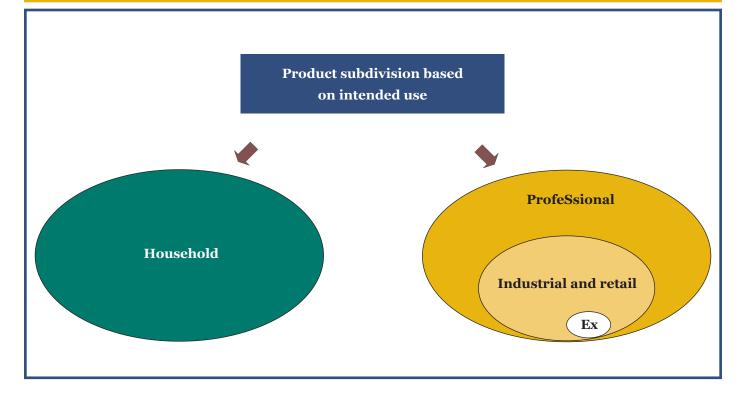

This implies that "Ex" products are a "whereof" and therefore must first meet industrial regulations and then, in addition, specific "Ex" ones.

Table 17 shows the main Ex standards for each certification scheme (for practical reasons we exclusively show the standards whose protection method is applicable to different types of equipment) used for certification purposes.

Finally, in Table 18 we deem it useful to indicate some "Ex" standards that are specific for a certain family of products.

GRAPH 2 PRODUCT SUBDIVISION BASED ON INTENDED USE

TAB. 17 MAIN EX STANDARDS FOR GASES AND DUSTS USED FOR CERTIFICATION PURPOSES

		art. 501	art. 505		
	General rules	FM 3600	ANSI/ISA 60079-0 UL 60079-0	EN 60079-0	IEC 60079-0
	Flame-proof enclosures – "d"	FM 3615 UL 1203	ANSI/ISA 60079-1 UL 60079-1	EN 60079-1	IEC 60079-1
	Pressurised equipment– "p"	ANSI/ISA 12.04.04 FM 3620 NFPA 496	ANSI/ISA 60079-2	EN 60079-2	IEC 60079-2
	Filling equipment – "q"		ANSI/ISA 60079-5 UL 60079-5	EN 60079-5	IEC 60079-5
	Equipment immersed in oil – "o"		ANSI/ISA 60079-6 UL 60079-6	EN 60079-6	IEC 60079-6
GAS	Equipment with enhanced safety – "e"		ANSI/ISA 60079-7 UL 60079-7	EN 60079-7	IEC 60079-7
Ŭ	Equipment with intrinsic safety – "i"	FM 3610 UL 913	ANSI/ISA 60079-11 UL 60079-11	EN 60079-11	IEC 60079-11
	Equipment with protection mode "n"	ANSI/ISA 12.12.01 FM 3611	ANSI/ISA 60079-15 UL 60079-15	EN 60079-15	IEC 60079-15
	Encapsulated equipment – "m"		ANSI/ISA 60079-18 UL 60079-18	EN 60079-18	IEC 60079-18
	systems with intrinsic safety – "i"		ANSI/ISA 60079-25	EN 60079-25	IEC 60079-25
	Equipment with optical radiation – "op"	ANSI/ISA-TR 12.21.01	ANSI/ISA 60079-28	EN 60079-28	IEC 60079-28
	Equipment with special protection – "s"				IEC 60079-33

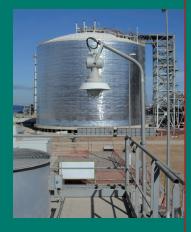
		art. 502	art. 505		
	General rules		ANSI/ISA 60079-0 UL 60079-0	EN 60079-0	IEC 60079-0
	Flame-proof enclosures – "d"	UL 1203	•		
R	Pressurised equipment– "p"	NFPA 496	ANSI/ISA 61241-2	EN 61241-4	IEC 61241-4
POLVERI	Equipment with intrinsic safety – "i"	UL 913	ANSI/ISA 60079-11 UL 60079-11	EN 60079-11	IEC 60079-11
PC	Equipment with protection mode "n"	ISA 12.12.01	• • •		
	Encapsulated equipment – "m"		ANSI/ISA 60079-18 UL 60079-18	EN 60079-18	IEC 60079-18
	Equipment protected by enclosures – "t"	FM 3616	ANSI/ISA 60079-31	EN 60079-31	IEC 60079-31

THE STANDARDS supporting certification

TABLE 18 SPECIFIC EX STANDARDS FOR CERTAIN FAMILIES OF PRODUCTS

.

	art. 501	art. 505		
Portable electronic products	ANSI/ISA 12.12.03			
Land mobile radios	FM 3640			
Submersible electric motors	FM 3650			
Electric motors and generators	UL 674			
Industrial control panels	UL 698A			
Electrical torches and lanterns	FM 3613 UL 783			
Electrical heaters	FM 7320 UL 823			
Lighting fixtures	UL 844			
Cables and accessories for cables	UL 2225			
Explosion venting devices	FM 7730		EN 14797	
Industrial trucks			EN 1755	
Alternative internal combustion engines	ANSI/ISA 12.20.01		EN 1834	
Service stations			EN 13012 EN 13617	
Non-electrical equipment			ISO 80079-36 ISO 80079-37	
Suppression systems			EN 14373	
Fans			EN 14983	
Transportable vented booths			EN 50381	
Pressurised premises – "p"			EN 60079-13	IEC 60079-13
Gas detectors		ANSI/ISA 60079-29	EN 60079-29	IEC 60079-29


CORTEM GROUP To be sure to be safe

Since 1968 Cortem S.p.A. has been designing and manufacturing protected electrical equipment intended for installation in areas at risk of explosion and fire. Thanks to constant technological innovation and continuous improvement, today it is a leading company in the industry, able to offer a wide range of solutions suitable for on-shore and off-shore applications. The special feature of Cortem Group - which includes the Cortem, Elfit e Fondisonzo brands - consists in its long-standing experience accrued in the sector, resulting in the ability to not merely supply Ex products, but custommade solutions as well.

All of our products are designed and manufactured in-house with various protection methods such as 'Ex-db' explosion proof, 'Ex-eb' enhanced safety, 'Ex de' mixed, 'Ex-nR' restricted breathing, using aluminium alloy, stainless steel and top quality plastics materials. The aluminium alloy used by Cortem has exceeded the tests required by standards EN60068-2-30 (hot/humid cycles) and EN60068-2-11 (salt mist tests). All our aluminium alloy products are protected by RAL 7035 epoxy coating. This treatment is a Cortem Group exclusive and assures long-term protection.

Cortem Group's production may be summarised as follows:

• Lighting fixtures, lighting fixtures for signalling obstacles, floodlights and portable lamps.

- Junction and pulling boxes, control stations.
- Signalling and control equipment, sockets and plugs.
- Cable glands and fittings.
- Special designs: electrical panels and control batteries based on the customer's requirements.

90% of our production is intended for the Oil & Gas sector, both off-shore and on-shore, but also chemical and pharmaceutical industries, as well as all those process areas characterised by the presence of explosive atmospheres such as grain silos, wood mills and paper mills. Every year we invest part of our resources in developing innovative products to address the market's needs. That is why our R&D department devises the best solutions considering regulatory, installation, safety and market price aspects.

With over 30 agencies, 90 distributors, 7 partners and 3 de-centralised production facilities, Cortem assures a qualified local presence in the world. For Cortem "de-localising" does not mean transferring plants, means, knowhow and resources to low-cost Countries, but rather replicating a winning model of industrial organisation where environmental safety, product quality, compliance with standards, technical support and market after-sale support are the foundations of our Corporate Mission.

The Pay Off "to be sure to be safe" represents the pride and passion for what we design and produce.

Certification systems IEC E NEC®

Ed. May 2023

Copyright Under the law on copyright, the Italian Civil Code and other provisions in force in markets where CortemGroup operates, any information, image, photograph, drawing, table or anything else contained in CortemGroup's illustrative/promotional material is exclusive property of CortemGroup, which holds any moral and economic and commercial exploitation rights. Any reproduction with any means either fully or in part of Cortem-Group's illustrative/promotional material is therefore forbidden without explicit written authorisation by Cortem Group. Any breach of the above shall be persecuted pursuant to law. ©di Cortem-Villesse - Italia. All rights reserved

W contem

Sales Department

Piazzale Dateo 2 20129 Milano, Italy

Italy

tel. +39 02 76 1103 29 r.a. fax +39 02 73 83 402 infomilano@cortemgroup.com

Export

tel. +39 02 76 1105 01 r.a. fax +39 02 70 00 54 71 export@cortemgroup.com saleseurope@cortemgroup.com

Registered Office and Production Facility

Via Aquileia 10, 34070 Villesse (GO), Italy tel. +39 0481 964911 r.a. fax +39 0481 964999 info@cortemgroup.com

ELFiT

Registered Office and Production Facility

Via Aquileia 12, 34070 Villesse (GO), Italy tel. +39 0481 964911 r.a. fax +39 0481 964999 info@elfit.com www.elfit.com

FFONDISONZO

Sales Department

Piazzale Dateo 2 20129 Milano, Italy

Italy

tel. +39 02 76 1103 29 r.a. fax +39 02 73 83 402 infomilano@cortemgroup.com

Export

tel. +39 02 76 1105 01 r.a. fax +39 02 70 00 54 71 export@cortemgroup.com saleseurope@cortemgroup.com

Registered Office and Production Facility

Via Aquileia 10, 34070 Villesse (GO), Italy tel. +39 0481 964911 r.a. fax +39 0481 964999 info@cortemgroup.com

To be sure to be safe.